Sample usage for featgram

Feature Grammar Parsing

Grammars can be parsed from strings.

>>> import nltk
>>> from nltk import grammar, parse
>>> g = """
... % start DP
... DP[AGR=?a] -> D[AGR=?a] N[AGR=?a]
... D[AGR=[NUM='sg', PERS=3]] -> 'this' | 'that'
... D[AGR=[NUM='pl', PERS=3]] -> 'these' | 'those'
... D[AGR=[NUM='pl', PERS=1]] -> 'we'
... D[AGR=[PERS=2]] -> 'you'
... N[AGR=[NUM='sg', GND='m']] -> 'boy'
... N[AGR=[NUM='pl', GND='m']] -> 'boys'
... N[AGR=[NUM='sg', GND='f']] -> 'girl'
... N[AGR=[NUM='pl', GND='f']] -> 'girls'
... N[AGR=[NUM='sg']] -> 'student'
... N[AGR=[NUM='pl']] -> 'students'
... """
>>> grammar = grammar.FeatureGrammar.fromstring(g)
>>> tokens = 'these girls'.split()
>>> parser = parse.FeatureEarleyChartParser(grammar)
>>> trees = parser.parse(tokens)
>>> for tree in trees: print(tree)
(DP[AGR=[GND='f', NUM='pl', PERS=3]]
  (D[AGR=[NUM='pl', PERS=3]] these)
  (N[AGR=[GND='f', NUM='pl']] girls))

In general, when we are trying to develop even a very small grammar, it is convenient to put the rules in a file where they can be edited, tested and revised. Let’s assume that we have saved feat0cfg as a file named 'feat0.fcfg' and placed it in the NLTK data directory. We can inspect it as follows:

>>> nltk.data.show_cfg('grammars/book_grammars/feat0.fcfg')
% start S
# ###################
# Grammar Productions
# ###################
# S expansion productions
S -> NP[NUM=?n] VP[NUM=?n]
# NP expansion productions
NP[NUM=?n] -> N[NUM=?n]
NP[NUM=?n] -> PropN[NUM=?n]
NP[NUM=?n] -> Det[NUM=?n] N[NUM=?n]
NP[NUM=pl] -> N[NUM=pl]
# VP expansion productions
VP[TENSE=?t, NUM=?n] -> IV[TENSE=?t, NUM=?n]
VP[TENSE=?t, NUM=?n] -> TV[TENSE=?t, NUM=?n] NP
# ###################
# Lexical Productions
# ###################
Det[NUM=sg] -> 'this' | 'every'
Det[NUM=pl] -> 'these' | 'all'
Det -> 'the' | 'some' | 'several'
PropN[NUM=sg]-> 'Kim' | 'Jody'
N[NUM=sg] -> 'dog' | 'girl' | 'car' | 'child'
N[NUM=pl] -> 'dogs' | 'girls' | 'cars' | 'children'
IV[TENSE=pres,  NUM=sg] -> 'disappears' | 'walks'
TV[TENSE=pres, NUM=sg] -> 'sees' | 'likes'
IV[TENSE=pres,  NUM=pl] -> 'disappear' | 'walk'
TV[TENSE=pres, NUM=pl] -> 'see' | 'like'
IV[TENSE=past] -> 'disappeared' | 'walked'
TV[TENSE=past] -> 'saw' | 'liked'

Assuming we have saved feat0cfg as a file named 'feat0.fcfg', the function parse.load_parser allows us to read the grammar into NLTK, ready for use in parsing.

>>> cp = parse.load_parser('grammars/book_grammars/feat0.fcfg', trace=1)
>>> sent = 'Kim likes children'
>>> tokens = sent.split()
>>> tokens
['Kim', 'likes', 'children']
>>> trees = cp.parse(tokens)
|.Kim .like.chil.|
|[----]    .    .| [0:1] 'Kim'
|.    [----]    .| [1:2] 'likes'
|.    .    [----]| [2:3] 'children'
|[----]    .    .| [0:1] PropN[NUM='sg'] -> 'Kim' *
|[----]    .    .| [0:1] NP[NUM='sg'] -> PropN[NUM='sg'] *
|[---->    .    .| [0:1] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'sg'}
|.    [----]    .| [1:2] TV[NUM='sg', TENSE='pres'] -> 'likes' *
|.    [---->    .| [1:2] VP[NUM=?n, TENSE=?t] -> TV[NUM=?n, TENSE=?t] * NP[] {?n: 'sg', ?t: 'pres'}
|.    .    [----]| [2:3] N[NUM='pl'] -> 'children' *
|.    .    [----]| [2:3] NP[NUM='pl'] -> N[NUM='pl'] *
|.    .    [---->| [2:3] S[] -> NP[NUM=?n] * VP[NUM=?n] {?n: 'pl'}
|.    [---------]| [1:3] VP[NUM='sg', TENSE='pres'] -> TV[NUM='sg', TENSE='pres'] NP[] *
|[==============]| [0:3] S[] -> NP[NUM='sg'] VP[NUM='sg'] *
>>> for tree in trees: print(tree)
(S[]
  (NP[NUM='sg'] (PropN[NUM='sg'] Kim))
  (VP[NUM='sg', TENSE='pres']
    (TV[NUM='sg', TENSE='pres'] likes)
    (NP[NUM='pl'] (N[NUM='pl'] children))))

The parser works directly with the underspecified productions given by the grammar. That is, the Predictor rule does not attempt to compile out all admissible feature combinations before trying to expand the non-terminals on the left hand side of a production. However, when the Scanner matches an input word against a lexical production that has been predicted, the new edge will typically contain fully specified features; e.g., the edge [PropN[num = sg] → ‘Kim’, (0, 1)]. Recall from Chapter 8 that the Fundamental (or Completer) Rule in standard CFGs is used to combine an incomplete edge that’s expecting a nonterminal B with a following, complete edge whose left hand side matches B. In our current setting, rather than checking for a complete match, we test whether the expected category B will unify with the left hand side B’ of a following complete edge. We will explain in more detail in Section 9.2 how unification works; for the moment, it is enough to know that as a result of unification, any variable values of features in B will be instantiated by constant values in the corresponding feature structure in B’, and these instantiated values will be used in the new edge added by the Completer. This instantiation can be seen, for example, in the edge [NP [num=sg] → PropN[num=sg] •, (0, 1)] in Example 9.2, where the feature num has been assigned the value sg.

Feature structures in NLTK are … Atomic feature values can be strings or integers.

>>> fs1 = nltk.FeatStruct(TENSE='past', NUM='sg')
>>> print(fs1)
[ NUM   = 'sg'   ]
[ TENSE = 'past' ]

We can think of a feature structure as being like a Python dictionary, and access its values by indexing in the usual way.

>>> fs1 = nltk.FeatStruct(PER=3, NUM='pl', GND='fem')
>>> print(fs1['GND'])
fem

We can also define feature structures which have complex values, as discussed earlier.

>>> fs2 = nltk.FeatStruct(POS='N', AGR=fs1)
>>> print(fs2)
[       [ GND = 'fem' ] ]
[ AGR = [ NUM = 'pl'  ] ]
[       [ PER = 3     ] ]
[                       ]
[ POS = 'N'             ]
>>> print(fs2['AGR'])
[ GND = 'fem' ]
[ NUM = 'pl'  ]
[ PER = 3     ]
>>> print(fs2['AGR']['PER'])
3

Feature structures can also be constructed using the parse() method of the nltk.FeatStruct class. Note that in this case, atomic feature values do not need to be enclosed in quotes.

>>> f1 = nltk.FeatStruct("[NUMBER = sg]")
>>> f2 = nltk.FeatStruct("[PERSON = 3]")
>>> print(nltk.unify(f1, f2))
[ NUMBER = 'sg' ]
[ PERSON = 3    ]
>>> f1 = nltk.FeatStruct("[A = [B = b, D = d]]")
>>> f2 = nltk.FeatStruct("[A = [C = c, D = d]]")
>>> print(nltk.unify(f1, f2))
[     [ B = 'b' ] ]
[ A = [ C = 'c' ] ]
[     [ D = 'd' ] ]

Feature Structures as Graphs

Feature structures are not inherently tied to linguistic objects; they are general purpose structures for representing knowledge. For example, we could encode information about a person in a feature structure:

>>> person01 = nltk.FeatStruct("[NAME=Lee, TELNO='01 27 86 42 96',AGE=33]")
>>> print(person01)
[ AGE   = 33               ]
[ NAME  = 'Lee'            ]
[ TELNO = '01 27 86 42 96' ]

There are a number of notations for representing reentrancy in matrix-style representations of feature structures. In NLTK, we adopt the following convention: the first occurrence of a shared feature structure is prefixed with an integer in parentheses, such as (1), and any subsequent reference to that structure uses the notation ->(1), as shown below.

>>> fs = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                               SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
>>> print(fs)
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]

There can be any number of tags within a single feature structure.

>>> fs3 = nltk.FeatStruct("[A=(1)[B=b], C=(2)[], D->(1), E->(2)]")
>>> print(fs3)
[ A = (1) [ B = 'b' ] ]
[                     ]
[ C = (2) []          ]
[                     ]
[ D -> (1)            ]
[ E -> (2)            ]
>>> fs1 = nltk.FeatStruct(NUMBER=74, STREET='rue Pascal')
>>> fs2 = nltk.FeatStruct(CITY='Paris')
>>> print(nltk.unify(fs1, fs2))
[ CITY   = 'Paris'      ]
[ NUMBER = 74           ]
[ STREET = 'rue Pascal' ]

Unification is symmetric:

>>> nltk.unify(fs1, fs2) == nltk.unify(fs2, fs1)
True

Unification is commutative:

>>> fs3 = nltk.FeatStruct(TELNO='01 27 86 42 96')
>>> nltk.unify(nltk.unify(fs1, fs2), fs3) == nltk.unify(fs1, nltk.unify(fs2, fs3))
True

Unification between FS_0 and FS_1 will fail if the two feature structures share a path π, but the value of π in FS_0 is a distinct atom from the value of π in FS_1. In NLTK, this is implemented by setting the result of unification to be None.

>>> fs0 = nltk.FeatStruct(A='a')
>>> fs1 = nltk.FeatStruct(A='b')
>>> print(nltk.unify(fs0, fs1))
None

Now, if we look at how unification interacts with structure-sharing, things become really interesting.

>>> fs0 = nltk.FeatStruct("""[NAME=Lee,
...                                ADDRESS=[NUMBER=74,
...                                         STREET='rue Pascal'],
...                                SPOUSE= [NAME=Kim,
...                                         ADDRESS=[NUMBER=74,
...                                                  STREET='rue Pascal']]]""")
>>> print(fs0)
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]
>>> fs1 = nltk.FeatStruct("[SPOUSE=[ADDRESS=[CITY=Paris]]]")
>>> print(nltk.unify(fs0, fs1))
[ ADDRESS = [ NUMBER = 74           ]               ]
[           [ STREET = 'rue Pascal' ]               ]
[                                                   ]
[ NAME    = 'Lee'                                   ]
[                                                   ]
[           [           [ CITY   = 'Paris'      ] ] ]
[           [ ADDRESS = [ NUMBER = 74           ] ] ]
[ SPOUSE  = [           [ STREET = 'rue Pascal' ] ] ]
[           [                                     ] ]
[           [ NAME    = 'Kim'                     ] ]
>>> fs2 = nltk.FeatStruct("""[NAME=Lee, ADDRESS=(1)[NUMBER=74, STREET='rue Pascal'],
...                                SPOUSE=[NAME=Kim, ADDRESS->(1)]]""")
>>> print(fs2)
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]
>>> print(nltk.unify(fs2, fs1))
[               [ CITY   = 'Paris'      ] ]
[ ADDRESS = (1) [ NUMBER = 74           ] ]
[               [ STREET = 'rue Pascal' ] ]
[                                         ]
[ NAME    = 'Lee'                         ]
[                                         ]
[ SPOUSE  = [ ADDRESS -> (1)  ]           ]
[           [ NAME    = 'Kim' ]           ]
>>> fs1 = nltk.FeatStruct("[ADDRESS1=[NUMBER=74, STREET='rue Pascal']]")
>>> fs2 = nltk.FeatStruct("[ADDRESS1=?x, ADDRESS2=?x]")
>>> print(fs2)
[ ADDRESS1 = ?x ]
[ ADDRESS2 = ?x ]
>>> print(nltk.unify(fs1, fs2))
[ ADDRESS1 = (1) [ NUMBER = 74           ] ]
[                [ STREET = 'rue Pascal' ] ]
[                                          ]
[ ADDRESS2 -> (1)                          ]
>>> sent = 'who do you claim that you like'
>>> tokens = sent.split()
>>> cp = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1)
>>> trees = cp.parse(tokens)
|.w.d.y.c.t.y.l.|
|[-] . . . . . .| [0:1] 'who'
|. [-] . . . . .| [1:2] 'do'
|. . [-] . . . .| [2:3] 'you'
|. . . [-] . . .| [3:4] 'claim'
|. . . . [-] . .| [4:5] 'that'
|. . . . . [-] .| [5:6] 'you'
|. . . . . . [-]| [6:7] 'like'
|# . . . . . . .| [0:0] NP[]/NP[] -> *
|. # . . . . . .| [1:1] NP[]/NP[] -> *
|. . # . . . . .| [2:2] NP[]/NP[] -> *
|. . . # . . . .| [3:3] NP[]/NP[] -> *
|. . . . # . . .| [4:4] NP[]/NP[] -> *
|. . . . . # . .| [5:5] NP[]/NP[] -> *
|. . . . . . # .| [6:6] NP[]/NP[] -> *
|. . . . . . . #| [7:7] NP[]/NP[] -> *
|[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
|[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
|[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
|[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
|. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
|. [-> . . . . .| [1:2] S[+INV] -> V[+AUX] * NP[] VP[] {}
|. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
|. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
|. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
|. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
|. . [-> . . . .| [2:3] S[-INV] -> NP[] * VP[] {}
|. . [-> . . . .| [2:3] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
|. . [-> . . . .| [2:3] S[-INV] -> NP[] * S[]/NP[] {}
|. [---> . . . .| [1:3] S[+INV] -> V[+AUX] NP[] * VP[] {}
|. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
|. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
|. . . [-> . . .| [3:4] VP[] -> V[-AUX, SUBCAT='clause'] * SBar[] {}
|. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
|. . . . [-] . .| [4:5] Comp[] -> 'that' *
|. . . . [-> . .| [4:5] SBar[] -> Comp[] * S[-INV] {}
|. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
|. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
|. . . . . [-> .| [5:6] S[-INV] -> NP[] * VP[] {}
|. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
|. . . . . [-> .| [5:6] S[-INV] -> NP[] * S[]/NP[] {}
|. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
|. . . . . . [->| [6:7] VP[] -> V[-AUX, SUBCAT='trans'] * NP[] {}
|. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
|. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
|. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
|. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
|. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
|. . [---------]| [2:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
|. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
|[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
>>> trees = list(trees)
>>> for tree in trees: print(tree)
(S[-INV]
  (NP[+WH] who)
  (S[+INV]/NP[]
    (V[+AUX] do)
    (NP[-WH] you)
    (VP[]/NP[]
      (V[-AUX, SUBCAT='clause'] claim)
      (SBar[]/NP[]
        (Comp[] that)
        (S[-INV]/NP[]
          (NP[-WH] you)
          (VP[]/NP[] (V[-AUX, SUBCAT='trans'] like) (NP[]/NP[] )))))))

A different parser should give the same parse trees, but perhaps in a different order:

>>> cp2 = parse.load_parser('grammars/book_grammars/feat1.fcfg', trace=1,
...                         parser=parse.FeatureEarleyChartParser)
>>> trees2 = cp2.parse(tokens)
|.w.d.y.c.t.y.l.|
|[-] . . . . . .| [0:1] 'who'
|. [-] . . . . .| [1:2] 'do'
|. . [-] . . . .| [2:3] 'you'
|. . . [-] . . .| [3:4] 'claim'
|. . . . [-] . .| [4:5] 'that'
|. . . . . [-] .| [5:6] 'you'
|. . . . . . [-]| [6:7] 'like'
|> . . . . . . .| [0:0] S[-INV] -> * NP[] VP[] {}
|> . . . . . . .| [0:0] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
|> . . . . . . .| [0:0] S[-INV] -> * NP[] S[]/NP[] {}
|> . . . . . . .| [0:0] S[-INV] -> * Adv[+NEG] S[+INV] {}
|> . . . . . . .| [0:0] S[+INV] -> * V[+AUX] NP[] VP[] {}
|> . . . . . . .| [0:0] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
|> . . . . . . .| [0:0] NP[+WH] -> * 'who' {}
|[-] . . . . . .| [0:1] NP[+WH] -> 'who' *
|[-> . . . . . .| [0:1] S[-INV] -> NP[] * VP[] {}
|[-> . . . . . .| [0:1] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
|[-> . . . . . .| [0:1] S[-INV] -> NP[] * S[]/NP[] {}
|. > . . . . . .| [1:1] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
|. > . . . . . .| [1:1] S[+INV]/?x[] -> * V[+AUX] NP[] VP[]/?x[] {}
|. > . . . . . .| [1:1] V[+AUX] -> * 'do' {}
|. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
|. > . . . . . .| [1:1] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
|. > . . . . . .| [1:1] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
|. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
|. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
|. > . . . . . .| [1:1] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
|. > . . . . . .| [1:1] VP[] -> * V[+AUX] VP[] {}
|. [-] . . . . .| [1:2] V[+AUX] -> 'do' *
|. [-> . . . . .| [1:2] S[+INV]/?x[] -> V[+AUX] * NP[] VP[]/?x[] {}
|. [-> . . . . .| [1:2] VP[]/?x[] -> V[+AUX] * VP[]/?x[] {}
|. [-> . . . . .| [1:2] VP[] -> V[+AUX] * VP[] {}
|. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='intrans'] {}
|. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='trans'] NP[] {}
|. . > . . . . .| [2:2] VP[] -> * V[-AUX, SUBCAT='clause'] SBar[] {}
|. . > . . . . .| [2:2] VP[] -> * V[+AUX] VP[] {}
|. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
|. . > . . . . .| [2:2] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
|. . > . . . . .| [2:2] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
|. . > . . . . .| [2:2] NP[-WH] -> * 'you' {}
|. . [-] . . . .| [2:3] NP[-WH] -> 'you' *
|. [---> . . . .| [1:3] S[+INV]/?x[] -> V[+AUX] NP[] * VP[]/?x[] {}
|. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
|. . . > . . . .| [3:3] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
|. . . > . . . .| [3:3] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
|. . . > . . . .| [3:3] V[-AUX, SUBCAT='clause'] -> * 'claim' {}
|. . . [-] . . .| [3:4] V[-AUX, SUBCAT='clause'] -> 'claim' *
|. . . [-> . . .| [3:4] VP[]/?x[] -> V[-AUX, SUBCAT='clause'] * SBar[]/?x[] {}
|. . . . > . . .| [4:4] SBar[]/?x[] -> * Comp[] S[-INV]/?x[] {}
|. . . . > . . .| [4:4] Comp[] -> * 'that' {}
|. . . . [-] . .| [4:5] Comp[] -> 'that' *
|. . . . [-> . .| [4:5] SBar[]/?x[] -> Comp[] * S[-INV]/?x[] {}
|. . . . . > . .| [5:5] S[-INV]/?x[] -> * NP[] VP[]/?x[] {}
|. . . . . > . .| [5:5] NP[-WH] -> * 'you' {}
|. . . . . [-] .| [5:6] NP[-WH] -> 'you' *
|. . . . . [-> .| [5:6] S[-INV]/?x[] -> NP[] * VP[]/?x[] {}
|. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='trans'] NP[]/?x[] {}
|. . . . . . > .| [6:6] VP[]/?x[] -> * V[-AUX, SUBCAT='clause'] SBar[]/?x[] {}
|. . . . . . > .| [6:6] VP[]/?x[] -> * V[+AUX] VP[]/?x[] {}
|. . . . . . > .| [6:6] V[-AUX, SUBCAT='trans'] -> * 'like' {}
|. . . . . . [-]| [6:7] V[-AUX, SUBCAT='trans'] -> 'like' *
|. . . . . . [->| [6:7] VP[]/?x[] -> V[-AUX, SUBCAT='trans'] * NP[]/?x[] {}
|. . . . . . . #| [7:7] NP[]/NP[] -> *
|. . . . . . [-]| [6:7] VP[]/NP[] -> V[-AUX, SUBCAT='trans'] NP[]/NP[] *
|. . . . . [---]| [5:7] S[-INV]/NP[] -> NP[] VP[]/NP[] *
|. . . . [-----]| [4:7] SBar[]/NP[] -> Comp[] S[-INV]/NP[] *
|. . . [-------]| [3:7] VP[]/NP[] -> V[-AUX, SUBCAT='clause'] SBar[]/NP[] *
|. [-----------]| [1:7] S[+INV]/NP[] -> V[+AUX] NP[] VP[]/NP[] *
|[=============]| [0:7] S[-INV] -> NP[] S[]/NP[] *
>>> sorted(trees) == sorted(trees2)
True

Let’s load a German grammar:

>>> cp = parse.load_parser('grammars/book_grammars/german.fcfg', trace=0)
>>> sent = 'die Katze sieht den Hund'
>>> tokens = sent.split()
>>> trees = cp.parse(tokens)
>>> for tree in trees: print(tree)
(S[]
  (NP[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom']
    (Det[AGR=[GND='fem', NUM='sg', PER=3], CASE='nom'] die)
    (N[AGR=[GND='fem', NUM='sg', PER=3]] Katze))
  (VP[AGR=[NUM='sg', PER=3]]
    (TV[AGR=[NUM='sg', PER=3], OBJCASE='acc'] sieht)
    (NP[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc']
      (Det[AGR=[GND='masc', NUM='sg', PER=3], CASE='acc'] den)
      (N[AGR=[GND='masc', NUM='sg', PER=3]] Hund))))

Grammar with Binding Operators

The bindop.fcfg grammar is a semantic grammar that uses lambda calculus. Each element has a core semantics, which is a single lambda calculus expression; and a set of binding operators, which bind variables.

In order to make the binding operators work right, they need to instantiate their bound variable every time they are added to the chart. To do this, we use a special subclass of Chart, called InstantiateVarsChart.

>>> from nltk.parse.featurechart import InstantiateVarsChart
>>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=1,
...                        chart_class=InstantiateVarsChart)
>>> print(cp.grammar())
Grammar with 15 productions (start state = S[])
    S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] VP[SEM=[BO=?b2, CORE=?vp]]
    VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] NP[SEM=[BO=?b2, CORE=?obj]]
    VP[SEM=?s] -> IV[SEM=?s]
    NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] N[SEM=[BO=?b2, CORE=?n]]
    Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a'
    N[SEM=[BO={/}, CORE=<dog>]] -> 'dog'
    N[SEM=[BO={/}, CORE=<dog>]] -> 'cat'
    N[SEM=[BO={/}, CORE=<dog>]] -> 'mouse'
    IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks'
    IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'eats'
    IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'walks'
    TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds'
    TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'walks'
    NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'john'
    NP[SEM=[BO={bo(\P.P(John),@x)}, CORE=<@x>]] -> 'alex'

A simple intransitive sentence:

>>> from nltk.sem import logic
>>> logic._counter._value = 100
>>> trees = cp.parse('john barks'.split())
|. john.barks.|
|[-----]     .| [0:1] 'john'
|.     [-----]| [1:2] 'barks'
|[-----]     .| [0:1] NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] -> 'john' *
|[----->     .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
|.     [-----]| [1:2] IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> 'barks' *
|.     [-----]| [1:2] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] -> IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
|[===========]| [0:2] S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={/}, CORE=<\x.bark(x)>]] *
>>> for tree in trees: print(tree)
(S[SEM=[BO={bo(\P.P(John),z2)}, CORE=<bark(z2)>]]
  (NP[SEM=[BO={bo(\P.P(John),z101)}, CORE=<z101>]] john)
  (VP[SEM=[BO={/}, CORE=<\x.bark(x)>]]
    (IV[SEM=[BO={/}, CORE=<\x.bark(x)>]] barks)))

A transitive sentence:

>>> trees = cp.parse('john feeds a dog'.split())
|.joh.fee. a .dog.|
|[---]   .   .   .| [0:1] 'john'
|.   [---]   .   .| [1:2] 'feeds'
|.   .   [---]   .| [2:3] 'a'
|.   .   .   [---]| [3:4] 'dog'
|[---]   .   .   .| [0:1] NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] -> 'john' *
|[--->   .   .   .| [0:1] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.P(John),z2)}, ?subj: <IndividualVariableExpression z2>}
|.   [---]   .   .| [1:2] TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] -> 'feeds' *
|.   [--->   .   .| [1:2] VP[SEM=[BO={?b1+?b2}, CORE=<?v(?obj)>]] -> TV[SEM=[BO=?b1, CORE=?v]] * NP[SEM=[BO=?b2, CORE=?obj]] {?b1: {/}, ?v: <LambdaExpression \x y.feed(y,x)>}
|.   .   [---]   .| [2:3] Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] -> 'a' *
|.   .   [--->   .| [2:3] NP[SEM=[BO={?b1+?b2+{bo(?det(?n),@x)}}, CORE=<@x>]] -> Det[SEM=[BO=?b1, CORE=?det]] * N[SEM=[BO=?b2, CORE=?n]] {?b1: {/}, ?det: <LambdaExpression \Q P.exists x.(Q(x) & P(x))>}
|.   .   .   [---]| [3:4] N[SEM=[BO={/}, CORE=<dog>]] -> 'dog' *
|.   .   [-------]| [2:4] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]] -> Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] N[SEM=[BO={/}, CORE=<dog>]] *
|.   .   [------->| [2:4] S[SEM=[BO={?b1+?b2}, CORE=<?vp(?subj)>]] -> NP[SEM=[BO=?b1, CORE=?subj]] * VP[SEM=[BO=?b2, CORE=?vp]] {?b1: {bo(\P.exists x.(dog(x) & P(x)),z2)}, ?subj: <IndividualVariableExpression z2>}
|.   [-----------]| [1:4] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]] -> TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<z2>]] *
|[===============]| [0:4] S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]] -> NP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<z2>]] VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<\y.feed(y,z3)>]] *
>>> for tree in trees: print(tree)
(S[SEM=[BO={bo(\P.P(John),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
  (NP[SEM=[BO={bo(\P.P(John),z102)}, CORE=<z102>]] john)
  (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
    (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
    (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z103)}, CORE=<z103>]]
      (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
      (N[SEM=[BO={/}, CORE=<dog>]] dog))))

Turn down the verbosity:

>>> cp = parse.load_parser('grammars/sample_grammars/bindop.fcfg', trace=0,
...                       chart_class=InstantiateVarsChart)

Reuse the same lexical item twice:

>>> trees = cp.parse('john feeds john'.split())
>>> for tree in trees: print(tree)
(S[SEM=[BO={bo(\P.P(John),z2), bo(\P.P(John),z3)}, CORE=<feed(z2,z3)>]]
  (NP[SEM=[BO={bo(\P.P(John),z104)}, CORE=<z104>]] john)
  (VP[SEM=[BO={bo(\P.P(John),z2)}, CORE=<\y.feed(y,z2)>]]
    (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
    (NP[SEM=[BO={bo(\P.P(John),z105)}, CORE=<z105>]] john)))
>>> trees = cp.parse('a dog feeds a dog'.split())
>>> for tree in trees: print(tree)
(S[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2), bo(\P.exists x.(dog(x) & P(x)),z3)}, CORE=<feed(z2,z3)>]]
  (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z106)}, CORE=<z106>]]
    (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
    (N[SEM=[BO={/}, CORE=<dog>]] dog))
  (VP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z2)}, CORE=<\y.feed(y,z2)>]]
    (TV[SEM=[BO={/}, CORE=<\x y.feed(y,x)>]] feeds)
    (NP[SEM=[BO={bo(\P.exists x.(dog(x) & P(x)),z107)}, CORE=<z107>]]
      (Det[SEM=[BO={/}, CORE=<\Q P.exists x.(Q(x) & P(x))>]] a)
      (N[SEM=[BO={/}, CORE=<dog>]] dog))))